国产一级a毛一级a看免费视频,久久久久久国产一级AV片,免费一级做a爰片久久毛片潮,国产精品女人精品久久久天天,99久久久无码国产精品免费了

產品推薦:氣相|液相|光譜|質譜|電化學|元素分析|水分測定儀|樣品前處理|試驗機|培養箱


化工儀器網>技術中心>工作原理>正文

歡迎聯系我

有什么可以幫您? 在線咨詢

微加工:剝離

來源:那諾中國有限公司   2015年07月31日 10:20  

Lift-off process in microstructuring technology is a method of creating structures (patterning) of a target material on the surface of a substrate (ex. wafer) using a sacrificial material (ex. Photoresist). It is an additive technique as opposed to more traditional subtracting technique like etching. The scale of the structures can vary from the nanoscale up to the centimeter scale or further, but are typically of micrometric dimensions.

Process

An inverse pattern is first created in the sacrificial stencil layer (ex. photoresist), deposited on the surface of the substrate. This is done by etching openings through the layer so that the target material can reach the surface of the substrate in those regions, where the final pattern is to be created. The target material is deposited over the whole area of the wafer, reaching the surface of the substrate in the etched regions and staying on the top of the sacrificial layer in the regions, where it was not previously etched. When the sacrificial layer is washed away (photoresist in a solvent), the material on the top is lifted-off and washed together with the sacrificial layer below. After the lift-off, the target material remains only in the regions where it had a direct contact with the substrate.

·       Substrate is prepared

·       Sacrificial layer is deposited and an inverse pattern is created (ex. photoresist is exposed and developed. Depending on the resist various methods can be used, such as Extreme ultraviolet lithography - EUVL or Electron beam lithography - EBL. The photoresist is removed in the areas, where the target material is to be located, creating an inverse pattern.)

·       Target material (usually a thin metal layer) is deposited (on the whole surface of the wafer). This layer covers the remaining resist as well as parts of the wafer that were cleaned of the resist in the previous developing step.

·       The rest of the sacrificial material (ex. photoresist) is washed out together with parts of the target material covering it, only the material that was in the "holes" having direct contact with the underlying layer (substrate/wafer) stays

Advantages

Lift-off is applied in cases where a direct etching of structural material would have undesirable effects on the layer below.

Disadvantages

There are 3 major problems with lift-off:

Retention

This is the worst problem for liftoff processes. If this problem occurs, unwanted parts of the metal layer will remain on the wafer. This can be caused by different situations. The resist below the parts that should have been lifted off could not have dissolved properly. Also, it is possible that the metal has adhered so well to the parts that should remain that it prevents lift-off.

Ears

When the metal is deposited, and it covers the sidewalls of the resist, "ears" can be formed. These are made of the metal along the sidewall which will be standing upwards from the surface. Also, it is possible that these ears will fall over on the surface, causing an unwanted shape on the substrate.

If the ears remain on the surface, the risk remains that these ears will go through different layers put on top of the wafer and they might cause unwanted connections.

Redeposition

During the liftoff process it is possible that particles of metal will become reattached to the surface, at a random location. It is very difficult to remove these particles after the wafer has dried.

Use

Lift-off process is used mostly to create metallic interconnections.
There are several types of lift-off processes, and what can be achieved depends highly on the actual process being used. Very fine structures have been used using EBL, for instance. The lift-off process can also involve multiple layers of different types of resist. This can for instance be used to create shapes that will prevent side walls of the resist being covered in the metal deposition stage.

*Please contact us if there is problem using this passage* 

免責聲明

  • 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
  • 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
  • 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。
企業未開通此功能
詳詢客服 : 0571-87858618
主站蜘蛛池模板: 诸城市| 咸丰县| 永善县| 博兴县| 建宁县| 保德县| 兴隆县| 武宣县| 绥江县| 收藏| 措勤县| 福泉市| 易门县| 石景山区| 北流市| 彩票| 元朗区| 房产| 无极县| 大同市| 石景山区| 临安市| 大方县| 乾安县| 泰和县| 社旗县| 甘肃省| 稷山县| 潼关县| 柳河县| 宣威市| 泰和县| 博白县| 韩城市| 盐城市| 桂东县| 邵阳市| 南靖县| 白朗县| 苗栗市| 普格县|