研究成就與看點
這篇研究是由沙特阿卜杜拉國王科技大學 (KAUST) 的 Stefaan De Wolf 教授與美國西北大學Edward H. Sargent教授團隊連手,發表于期刊 Advanced Energy Materials。論文題目為”Efficient Narrow Bandgap Pb‐Sn Perovskite Solar Cells Through Self‐Assembled Hole Transport Layer with Ionic Head”。
針對窄能隙鉛錫 (Pb-Sn) 鈣鈦礦太陽能電池中,常用電洞傳輸層 PEDOT:PSS 與鈣鈦礦埋藏接口之間,因聚苯乙烯磺酸鹽 (PSS) 與 Sn2+ 反應而導致的性能問題,提出創新方法合成一種新型的咔唑基自組裝單分子層 (SAM),名為 BrNH3-4PACz。此 SAM 具有雙重功能:咔唑基團附著的烷基膦酸錨定基團在氧化銦錫 (ITO) 電極表面提供合適的偶極矩,以實現有效的電洞提??;離子性的銨溴化物端基則鈍化鈣鈦礦底部表面并調節其結晶。
研究重要成果包括
•電池性能: 使用 BrNH3-4PACz 作為電洞傳輸層的 p-i-n 結構窄能隙 Pb-Sn 鈣鈦礦太陽能電池,實現了 23.0% 的最高功率轉換效率 (PCE) 和 0.88 V 的開路電壓 (VOC),這在文獻報導中屬于最高值之一。
•顯著的性能提升與低遲滯: 相較于常用的 2PACz 和 MeO-2PACz SAM,使用 BrNH3-4PACz 的組件展現出顯著更高的 VOC、短路電流密度 (JSC) 和填充因子 (FF),且遲滯現象更小。
•更快的電荷轉移速率: 瞬態吸收光譜測量顯示,BrNH3-4PACz 具有更快的電荷轉移速率。
•強相互作用與缺陷鈍化: 第一原理計算 (DFT) 模擬表明,BrNH3+-4PACz 與鈣鈦礦表面具有更強的相互作用,并能有效鈍化晶格缺陷。此研究成功解決了窄能隙 Pb-Sn 鈣鈦礦太陽能電池中,由于傳統電洞傳輸層 PEDOT:PSS 引起的接口問題,透過創新的雙功能自組裝單分子層,顯著提升了電池的性能。
研究團隊
這篇研究的通訊作者為沙特阿卜杜拉國王科技大學 (KAUST) 的 Stefaan De Wolf 教授,參與這篇研究的學校主要有:
l 沙特阿卜杜拉國王科技大學(KAUST)
l 美國西北大學 (Northwestern University)
l 立陶宛考納斯理工大學 (Kaunas University of Technology)
研究背景
單接面鈣鈦礦太陽能電池(PSCs)效率已達26.1%,接近理論極限,因此開發疊層太陽能電池成為突破效能限制的關鍵。窄能隙鉛錫(Pb-Sn)鈣鈦礦(能隙1.21-1.25 eV)是理想的底層光吸收材料,但其性能仍受限于界面問題。
盡管研究者已著重于塊體工程和表面處理,Pb-Sn鈣鈦礦與電洞傳輸層(HTL)的埋藏接口卻常被忽視。目前常用的PEDOT雖能量對準良好,但其PSS成分會氧化Sn2+成Sn4+,并與Au和Ag等金屬產生不良反應,降低組件性能。
咔唑基自組裝單分子層(SAMs)在純鉛PSCs中表現良好,能提高透明導電氧化物電極的功函數,促進電洞提取。然而在窄能隙PSCs中,ITO/SAM結構的VBM(-5.4至-5.9 eV)較深,難以與Pb-Sn鈣鈦礦的淺VBM(-5.1至-5.3 eV)達成良好對準,且常需額外表面活性劑處理。
因此,設計新型多功能SAM分子以解決窄能隙Pb-Sn鈣鈦礦太陽能電池中HTL問題成為當前研究的迫切需求,旨在克服現有HTL局限性,提升電池整體效能。
解決方案
研究團隊設計并合成了一種新型的咔唑基自組裝單分子層 (SAM) 分子,名為 BrNH3-4PACz。這個分子的雙重功能,旨在克服傳統電洞傳輸層 (HTL) 在窄能隙 Pb-Sn 鈣鈦礦太陽能電池應用中的限制。
雙功能設計:
?咔唑基頭部與烷基膦酸錨定基團的結合,可以在氧化銦錫 (ITO) 電極表面提供合適的偶極矩,實現與窄能隙鈣鈦礦的理想能帶對準,從而促進有效的電洞提取。
?離子性的溴化銨 (ammonium bromide) 基團位于咔唑頭部,能夠鈍化鈣鈦礦的底面并調節其結晶。
解決方案的關鍵機制:
?優化能量對準: BrNH3-4PACz 使得 ITO 電極的功函數與 Pb-Sn 鈣鈦礦的價帶頂部 (VBM) 更好地對準,相較于傳統的 2PACz 和 MeO-2PACz,其能帶偏移更小,有助于提升電洞提取效率。
?鈍化界面缺陷: 溴化銨基團可以離解成銨離子 (-NH3+) 和溴離子 (Br-),鈍化鈣鈦礦晶格中的 A 位陽離子缺陷和碘陰離子缺陷,減少非輻射復合損失,從而提升開路電壓 (VOC)。
?改善結晶動力學: 離子性基團有助于調節鈣鈦礦薄膜的結晶過程,減少晶界和體積缺陷密度,進而提升短路電流密度 (JSC) 和整體電池性能。
實驗過程與步驟
•BrNH3-4PACz 的合成:合成新型的咔唑基 SAM 分子 BrNH3-4PACz。
•鈣鈦礦前驅物溶液的制備: 在氮氣保護的手套箱中,混合了碘化銫 (CsI)、碘化甲脒 (FAI)、碘化甲胺 (MAI)、碘化鉛 (PbI2)、碘化錫 (SnI2)、氟化錫 (SnF2)、硫氰酸胍 (GuaSCN) 和溴化 4-氟苯乙銨 (4F-PEABr) 于無水 DMF 和 DMSO 的混合溶劑中,制備了 Cs0.05FA0.70MA0.25Sn0.50Pb0.50I3 鈣鈦礦前驅物溶液,并在黑暗中劇烈攪拌 2 小時后,使用 0.20 µm PTFE 濾器過濾備用。
•鈣鈦礦薄膜的制備:
?將 ITO 基板經過標準清潔流程和 UV-O3 處理。
?通過在 3000 rpm 下旋涂 35 秒,將 1 mM 濃度的 SAM 溶液(BrNH3-4PACz 使用甲醇/乙醇 (1:1 v/v) 混合溶劑,2PACz 和 MeO-2PACz 使用乙醇)錨定在 ITO 基板上。
?之后在 100°C 下退火 10 分鐘。
?在氮氣保護的手套箱中,將鈣鈦礦前驅物溶液以 1000 rpm 旋涂 10 秒,然后以 4000 rpm 旋涂 40 秒 到 SAM 修飾的 ITO 基板上。
?在第二步旋涂結束前 20 秒進行反溶劑淬滅。
?基板立即轉移到加熱板上,在 100°C 下退火 10 分鐘。
?部分薄膜通過旋涂 1,2-二氨基乙烷的氯苯溶液進行后處理鈍化,然后在 100°C 下退火 5 分鐘。
•太陽能電池組件的制備: 制備了倒置 p-i-n 結構的單接面太陽能電池,結構為 玻璃/ITO/SAM/Cs0.05FA0.70MA0.25Pb0.5Sn0.5I3/EDA/C60/BCP/Ag。在鈣鈦礦薄膜上旋涂乙二胺 (EDA) 溶液作為鈍化層。通過熱蒸鍍沉積 C60 (電子傳輸層) 和 BCP (緩沖層)。最后,通過熱蒸鍍沉積銀 (Ag) 電極。
研究成果與表征
準費米能級分裂 (QFLS) 光譜量測
QFLS 與太陽能電池的開路電壓 VOC 的理論極限相關,是評估光吸收層質量和非輻射復合損失的重要指標。更高的 QFLS 通常意味著更少的能量損失和更高的 VOC 潛力。
圖 3d-f: 分別展示了在 ITO/2PACz、ITO/MeO-2PACz 和 ITO/BrNH3-4PACz 基板上制備的窄能隙鈣鈦礦薄膜的準費米能級分裂 (QFLS) 成像圖。顏色深淺代表 QFLS 的大小。
圖 3g: 展示了對圖 3d-f 中 QFLS 分布數據的直方圖分析,更清晰地顯示了不同 SAMs 對 QFLS 值的影響。
結果顯示,使用 BrNH3-4PACz 的鈣鈦礦薄膜展現出比使用其他 SAMs 的薄膜高出超過 60 mV 的 QFLS 增強。這表明 BrNH3-4PACz 的雙重功能——優化能量對準和鈍化 HTL/鈣鈦礦埋藏界面——有效地減少了能量損失,這與器件性能的提升相符。
光焱科技Enlitech即將推出新一代QFLS可視化分析系統
可以快速取得QFLS視覺圖,測得Pseudo JV,迅速了解光伏材料的iVoc和最佳IV曲線圖,關注我們獲取更多信息!
電流密度-電壓 (J-V) 曲線量測
評估太陽能電池組件的光伏性能,J-V 曲線的形狀也能反映組件的電荷傳輸和復合情況,例如是否存在遲滯現象。
圖 2c 展示了使用不同 SAMs 的最佳組件在正向和反向掃描下的 J-V 曲線。
圖 2e-h 以箱線圖的形式展示了使用不同 ITO/SAM HTLs 制備的窄能隙 Pb-Sn 鈣鈦礦太陽能電池的 VOC、JSC、FF 和 PCE 的統計分布。
結果顯示,使用 BrNH3-4PACz 作為 HTL 的組件展現出顯著更高的 VOC (平均 0.88 V)、JSC 和 FF (80%),且數據偏差更小,相較于使用 2PACz (VOC 約 0.80 V,FF 約 70%) 和 MeO-2PACz (VOC 約 0.79 V,FF 約 61%) 的組件。最佳的 BrNH3-4PACz 組件取得了 23.0% 的 PCE,VOC 為 0.88 V,JSC 為 32.2 mA cm?2,FF 為 81.9%。
使用 2PACz 和 MeO-2PACz 的組件的 J-V 曲線表現出明顯的遲滯現象,這表明電荷在 HTL/鈣鈦礦界面存在不平衡和累積。而 BrNH3-4PACz 組件的遲滯現象則明顯減輕,顯示出優異的電荷提取特性。表 S3 進一步總結了最佳組件的光伏參數。
外量子效率 (EQE) 量測
測量太陽能電池在不同波長光照下的光譜響應,反映電池對不同波長光子的收集效率。
圖 2d 顯示了使用不同 SAMs 的窄能隙太陽能電池的 EQE 光譜。使用 BrNH3-4PACz 的組件在整個可見光和近紅外波長范圍內都表現出更高的光譜響應,這與其較高的 JSC 相一致。通過積分 EQE 曲線得到的 JSC 值與 J-V 測量結果相符,進一步證實了 BrNH3-4PACz 有效提升了電荷收集效率。
其他表征
X 射線光電子能譜 (XPS)
分析 ITO/SAM 表面的元素組成和化學態,驗證 SAM 分子的成功錨定以及 BrNH3 頭基的完整性。(圖 S1b、圖 1b-d、表 S2、圖 S7c)
紫外光電子能譜 (UPS):
測定 ITO/SAM 和鈣鈦礦的功函數 (WF) 和價帶頂部 (VBM),從而分析界面能級排列情況,判斷電荷注入和提取的勢壘大小。(圖 1i )
原子力顯微鏡 (AFM):
觀察 ITO/SAM 薄膜的表面形貌,測量其粗糙度,以評估 SAM 層的覆蓋均勻性。(圖 S3a-c)
開爾文探針力顯微鏡 (KPFM):
測量 ITO/SAM 表面的表面電勢和功函數分布,進一步驗證 SAM 分子對 ITO 功函數的調制效果。(圖 1e,f 和 S3d-f)
瞬態吸收 (TA) 光譜:
研究窄能隙鈣鈦礦中激發電荷載流子的動力學過程,包括電荷轉移速率和載流子壽命,從而理解不同 SAMs 對電洞提取效率的影響。(圖S10、圖 3a 和 S11-S12、圖 3b,c 和 S12,表 S5)
空間電荷限制電流 (SCLC) 量測:
通過分析電洞專用器件在黑暗條件下的電流-電壓特性,確定陷阱填充極限電壓 (VTFL),從而評估鈣鈦礦薄膜中的陷阱密度。較低的 VTFL 對應于較低的陷阱密度。(圖 S9b)
密度泛函理論 (DFT) 模擬:
從原子層面研究 ITO/SAM/鈣鈦礦界面的缺陷情況,以及引入離子銨基團對界面相互作用和電子結構的影響。(圖 4 和 S14,表 S6)
X 射線繞射 (XRD):
分析在不同 ITO/SAM 層上制備的鈣鈦礦薄膜的晶體結構和結晶度。(圖 S6a,b)
掃描電子顯微鏡 (SEM):
觀察在不同 ITO/SAM 層上生長的鈣鈦礦薄膜的表面形貌和晶粒尺寸。(圖 S5)
結論
研究團隊成功設計并合成了一種全新的咔唑基自組裝單分子層 BrNH3-4PACz,并展現了優異的性能。這種分子具備雙重功能:咔唑頭基能穩固地附著于氧化銦錫(ITO)電極表面,透過合適的偶極矩來優化與窄能隙鈣鈦礦的能級對準,同時提升電洞提取效率。此外,頭基上的離子性溴化銨部分還能有效鈍化鈣鈦礦底表面并調控其結晶過程,進一步改善材料質量。
透過這種精心設計的分子結構,成功制備了 p-i-n 架構的窄能隙 Pb-Sn 鈣鈦礦太陽能電池,其能隙為 1.24 eV。實驗結果顯示,以 BrNH3-4PACz 作為電洞傳輸層的組件表現出色,最佳電池的功率轉換效率(PCE)高達 23.0%,并實現了 0.88 V 的開路電壓(VOC)及 81.9% 的填充因子(FF)。
相較于使用傳統 SAM(如 2PACz 和 MeO-2PACz)的組件,BrNH3-4PACz 使組件的準費米能級分裂(QFLS)提升了超過 60 mV,這與更低的 VOC 損耗和更高的器件性能相吻合。觀察結果顯示,最終的 VOC 損失僅為 370 mV,處于目前的 Pb-Sn 鈣鈦礦太陽能電池之列。
密度泛函理論(DFT)模擬進一步證實,BrNH3-4PACz 中的離子性銨基部分有助于鈍化界面缺陷,進一步降低非輻射復合損失。整體而言,本研究設計的 BrNH3-4PACz 自組裝單分子層能夠有效調控 ITO/HTL/鈣鈦礦界面,顯著提升電池效率與電壓。
文獻參考自Advanced Energy Materials_DOI: 10.1002/aenm.202404617
本文章為Enlitech光焱科技改寫 用于科研學術分享 如有任何侵權 請來信告知
相關產品
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。