文獻名:Enhancement of sewage sludge dewaterability by fungal conditioning with Penicillium simplicissimum NJ12: From bench- to pilot-scale consecutive multi-batch investigations
作者: Neng Tao, Xiu Wu, Feng Zhang, Zilei Pi, Jiaqi Wen, Di Fang, Lixiang Zhou
Nanjing Agricultural University
摘要:Bench- and pilot-scale successive multi-batch trials were conducted to investigate the performance and sustainability of fungal conditioning with Penicillium simplicissimum NJ12 for improving sludge dewatering. The dominant factors affecting the sludge dewaterability improvement by P. simplicissimum NJ12 were also identified. Fungal treatment with P. simplicissimum NJ12 at a volume fraction of 5% of the inoculum greatly improved the sludge dewaterability. This improvement was characterized by sharp decreases in the specific resistance to filtration from 1.97 × 10 13 to 3.52 × 10 11 m/kg and capillary suction time from 32 to 12 s within 3 days. Stepwise multiple linear regression analysis showed that a marked decrease (58.8%) in the protein content in slime extracellular polymeric substances and an increase in the zeta potential of the sludge (from − 35 to − 10 mV) were the most important factors that improved the dewaterability of sludge after fungal treatment. Consecutive processes of fungal treatment could be realized by recirculating the fungal-treated sludge with a recycling rate of 1:2 (Vbiotreated sludge/Vtotal sludge ). The treatment effectiveness was maintained only over three successive cycles, but replenishment with fresh P. simplicissimum NJ12 would be provided periodically at set batch intervals. These findings demonstrate the possibility of P. simplicissimum NJ12-assisted fungal treatment for enhancing sludge dewatering.
關鍵詞:Fungal treatment, Penicillium simplicissimum, Sewage sludge, Dewatering, Stepwise multiple linear regression, Zeta potential, Protein
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。