SMC電磁閥防火的具體措施是怎樣的?
SMC電磁閥盡管對閥有的防火性有著不同的看法,制訂的規格不同,試驗方法也不同,但對閥門怎樣才能防火應該有比較致的看法。對閥體來說,它應該有以下三點,而且為保證這三點應該采取各種具體措施。
(1)內部泄漏量小。為了保證這,應考慮到閥芯和閥座的金屬面接觸,在著火時或著火這后,閥體處于高溫之中,不管其密封結構如何,彈簧力和外加壓力怎樣變化,都應該保證這點,應認為這是保證其精密關閉的關鍵。
(2)外部泄漏量小。為了盡量減小外部泄漏,考慮的方法有:采用能防火的閥桿密封材料,避免用較大的墊片式閥體連結。
(3)有連續的操作性。燃燒后仍能正常工作的閥門,自然就具有抗變形的能力,有抗損性。
為了保證閥體有防火,許多都進行過各種嘗試。例如,他們在閥門上包扎了多層的氈罩,用耐火材料砌成箱體,使閥門和外界隔開。但上述方法都不太會令人滿意,因為閥門每次維修都要拆開、砌上。同是,由于閥門安裝位置的限制,這種方法也未必能用。
SMC電磁閥目前較為滿意的方法是用種防火袋,它可以在幾分種之內就套上,維修時也易于揭開。袋的材料含有多層的陶瓷纖維(eramicfiber)或玻璃纖維(fiberglass)用尼龍捆綁裹緊,并用涂有乙烯樹脂的不銹鋼絲綁緊在裝置上。在般發問,并不需改變管道位置,安裝空間小,通過試驗在2000℉的火焰中燃燒30分鐘,閥門仍不損壞,令人滿意。
2、執行機構的防火
SMC電磁閥由于執行機構直接控制著閥門的位置,所以更需要認真研究。為了使閥門能及時保持關閉,因此在容易著火的場合常選用彈簧式氣動膜片的鋼(鐵)執行機構,主要是利用膜片熔點低這特點。著火時,由于膜片熔點低很快損壞,因此彈簧移動,使閥門處于關閉位置。利用對熱敏感的可熔式孔塞來降低氣動系統的壓力,特別適用于活塞式往復彈簧執行機構。
嚴重的火災能夠改變金屬零件的特性,有引起金屬變軟并失去回火特性,有些金屬實際上熔化了。彈簧力的大小和回火特性有直接的關系,燃燒后剩余彈簧力能否足夠保持閥門位置,需要對執行機構進行燃燒試驗才能證明。
對SMC電磁閥來說,燃燒后常常需要剩余彈簧力矩來保持閥門的緊閉位置,關閉所需的力似乎遠遠小于執行機構原來的輸出力。在球形閥的執行機構上,剩余彈簧力很重要。在同樣的管道壓力下,平衡式球形閥比不平衡式球形閥所要求的彈簧力要小些,因此應用在易著火的場合時,人們愿意用平衡式球形閥。
要使執行機構燃燒之后仍能操作,就必須保護彈簧,使它免受火焰退火的影響。保護彈簧可用三種方法:用熱材料、用灑水器或用防火涂層。包括上多層的熱帶,利用熱罩或者用防火袋,使執行機構在著火后正常運行半小時。但是這種招和密封方法較為笨重而不便,占空間大。
在執行機構頂部裝上灑水器,這種做法增加了安裝和維護費用;而且因火災時經常停水,也無法給灑水器供水。執行機構可以涂上種含有環氧基(epoxy—based)物質的膨脹薄層,使執行機構正常運行。在個燃燒試驗中,由于涂料的保護,雖然火溫高達1400~1700℉,執行機構仍能工作42分鐘。試驗用1600磅的彈簧式鑄鐵執行機構,約7英尺長,氣缸孔徑12英寸,利用9個丙烷噴炬來燃燒。在整個燃燒過程中執行機構的彈簧每分鐘往復次,燃燒后彈簧的輸出力矩只降低6%,而且主要是由于軸承精度下降,摩擦增加所造成的。試驗表明彈簧并不受燃燒火焰的影響,活塞與連桿的密封也依然如舊,密封良好。完成試驗之后,把執行機構浸在冷水中。模擬高溫外殼的突冷作用。試驗表明,執行機構的殼體和內部零件并不因突然冷卻而受到有害的影響。
膨脹涂層是抹上去的,就像是抹水泥樣,抹時可在現場進行,要注意不要抹住密封部位,這樣會使維修不便。當涂層干固時,就形成了堅硬的、不可滲透的密封層。Jamesbury公司還在主要部位造了盤板和箱體,分別涂抹,這樣維修時就可以搬開盤板。如果執行機構是鋁殼體,即使用涂料也難以防火,因為鋁的熔點低(1033~1150℉),在高于此熔點的碳氫混合火焰中,零件就會失效,閥門不能關閉。
SMC電磁閥后,還要介紹種連桿保護的方法。往復式彈簧裝置是由各個調節閥制造供應的,這些彈簧裝置處于種“待擊”位置,它只有在著火時才能擊發,擊發時閥門移動到個自動保險的位置。還將有持元件可以用易熔連桿、脆性連桿或電熱連桿。電熱連桿和易熔連桿的作用樣,都能受熱啟動。在著火的危險時刻,這些連桿立刻被煙氣隨動裝置所斷開,使閥門處于保險位.
噪音是指各種不同頻率和振幅聲波的隨機組合,單位分貝(dB)。通常要求調節閥的噪音低于85dB(即在距離閥門出口下游1m的管道壁向外1m處測得的噪音值)。超過85dB的噪音嚴重影響交流,并會對聽力造成損害。
1 調節閥的噪音來源
調節閥主要有三種噪音來源:
(1)自身振動產生的噪音。介質流過調節閥會對閥芯產生沖刷,使閥芯不穩定產生橫向運動甚與設備起產生共振。由于調節閥使用中自身的振動是難免的,因此這類噪音的產生也不可避免。安裝時注意盡量將調節閥正立安裝于水平管道上減少由于閥芯不穩而產生的噪音,通常這類噪音值很小,造成影響不大。
(2)空氣動力學噪音。介質在流經調節閥的縮流斷面時,由于縮流斷面的阻擋使流路突然改變而出現紊流,同時介質流速發生變化,液體的機械能部分轉換為聲能而產生的噪音稱為空氣動力學噪音。由于調節閥在減壓時引起液體紊流不可避免,因此空氣動力學噪音不能*消除。通常這類噪音值也很小,造成影響不大。
(3)流體動力學噪音。流體在調節閥中流速過快形成阻塞流。阻塞流是指不可壓縮或可壓縮流體在流過調節閥時所達到的大流量狀態。在固定的入口條件下,當閥前壓力保持定而逐步降低閥后壓力時,流經調節閥的流量會增加到個大極限值,再繼續降低閥后壓力,流量將不再增加,這個極限流量即為阻塞流。液體阻塞流極易引起閃蒸和氣蝕,同時伴有強噪音產生,通常這種噪音達100dB左右,造成影響大。
總之,調節閥由于自身振動及空氣動力學原因產生的噪音都很小,并且不可能*消除,通常將調節閥的噪音控制85dB以下,主要是針對流體動力學噪音。由于液體阻塞流極易引起閃蒸及氣蝕,閃蒸和氣蝕會產生噪音,所以控制噪音就需要想辦法控制阻塞流的閃蒸及氣蝕。
2 SMC電磁閥流的閃蒸及氣蝕
2.1 液體流經調節閥時壓力和流速的關系
液體流經調節閥是液體勢能和動能之間的轉化,體現在外就是壓力和流速之間的轉化,即壓力降低,流速增加;壓力增加,流速降低。此過程遵循能量守恒定律,即液體總能量保持不變。
圖1為液體流經調節閥時壓力和流速間的關系圖示。圖中P1為閥前液體壓力,P2為閥后液體壓力,V1為閥前液體速度,V2為閥后液體速度,PVC為縮流斷面點處液體壓力。
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,化工儀器網對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。